16-Sep-2020 - Max-Planck-Institut für Chemie

On the road to conductors of the future

Superconductivity in hydrogen sulfide

Superconducting wires can transport electricity without loss. This would allow for less power production, reducing both costs and greenhouse gasses. Unfortunately, extensive cooling stands in the way, because existing superconductors only lose their resistance at extremely low temperatures. In the journal Angewandte Chemie, scientist have now introduced new findings about hydrogen sulfide in the H(3)S form, and its deuterium analogue D(3)S, which become superconducting at the relatively high temperatures of -77 and -107 °C, respectively.

This is even true in comparison with the current front-runners, copper-containing ceramics with transition temperatures that start at about -135 °C. Despite extensive research into sulfur/hydrogen systems, many important questions remain. Most importantly, superconducting hydrogen sulfide was previously produced from "normal" hydrogen sulfide, H(2)S, which was converted into a metal-like state with a composition of H(3)S under pressures of about 150 GPa (1.5 million bar). Such samples were inevitably contaminated by hydrogen-depleted impurities that can distort experimental results. To avoid this, researchers led by Vasily S. Minkov have now produced stoichiometric H(3)S by heating elemental sulfur directly with an excess of hydrogen (H(2)) with a laser, under pressure. They also produced samples made with deuterium (D(2))--an isotope of hydrogen.

The cause of the relatively high transition temperature of H(3)S is its hydrogen atoms, which resonate with an especially high frequency within the crystal lattice. Because deuterium atoms are heavier than hydrogen, they resonate more slowly, so lower transition temperatures were expected for D(3)S. The team at the Max-Planck Institute for Chemistry (Mainz, Germany), the University of Chicago (USA), and the Soreq Nuclear Research Center (Yavne, Israel) used a variety of analytical methods to refine the phase diagrams for H(3)S and D(3)S in relation to pressure and temperature, and to shed additional light on their superconducting properties.

At 111 to 132 GPa and 400 to 700 °C, the syntheses produced nonmetallic, electrically isolating structures (Cccm phases) that do not become a metal when cooled or pressurized further. They contain H(2) (or D(2)) units within the crystal structure, which suppress superconductivity. The desired superconducting structures, cubic Im-3m phases, were obtained by syntheses above 150 GPa at 1200 to 1700 °C. They are metallic and shiny with low electrical resistance. At 148 to 170 GPa, samples of Im-3m-H(3)S had transition temperatures around -77 °C. The D(3)S analogues had a transition temperature of about -107 °C at 157 GPa, which is significantly higher than expected. Decrease of pressure reversibly leads to an abrupt reduction of the transition temperature and loss of metallic properties. This is caused by rhombohedral distortions in the crystal structure (R3m phase). Heating under pressure irreversibly transforms the R3m phase into the Cccm phase. R3m is clearly a metastable intermediate phase that only occurs during decomposition.

In the future, the researchers hope to find other hydrogen-rich compounds that can be converted to metals without high pressures and become superconducting at room temperature.

Facts, background information, dossiers
  • hydrogen sulfide
More about MPI für Chemie
  • News

    Mirror image molecules reveal drought stress in forests

    Worldwide, plants emit about 100 million tonnes of monoterpenes into the atmosphere each year. These volatile organic molecules include many fragrances such as the molecule pinene – known for its pine fresh scent. Since these molecules are highly reactive and can form tiny aerosol particles ... more

    Rethinking indoor air chemistry

    People typically spend 90 percent of their lives inside, at home, at work or in transport. Within these enclosed spaces, occupants are exposed to a multitude of chemicals from various sources, including outdoor pollutants penetrating indoors, gaseous emissions from building materials and fu ... more

    Cleaner air as a result of coronavirus lockdown

    During the first lockdown of the coronavirus pandemic, soot concentrations in the atmosphere over Western and Southern Europe almost halved. This is apparent from the comparison of two measurement campaigns carried out by the German research aircraft HALO in 2017 and 2020. A new study sugge ... more

More about University of Chicago
More about Angewandte Chemie
  • News

    Exceptional painting - exceptional lead binding

    Rembrandt van Rijn was one of the most important Dutch painters of the 17th century. Probably his most famous painting is The Night Watch from 1642, which can be admired today in the Rijksmuseum in Amsterdam. An international team has now identified lead formate in several areas of the Nigh ... more

    Finally: Resistant plastic can be recycled

    Nylon-6 is a tough, non-biodegradable plastic that cannot be recycled by conventional methods. A new way has now been introduced by a team from the USA in the journal Angewandte Chemie: with an easily accessible lanthanum trisamido catalyst, Nylon-6 can be depolymerized highly selectively, ... more

    Long-Lasting, Intense Afterglow

    A team of researchers from Lithuania has developed organic dyes showing a particularly long afterglow after being excited by light. Doping a polymer with newly synthesized diboraanthracene dyes resulted in an intense red or blue–green dual afterglow, which was composed of persistent thermal ... more