03-Nov-2020 - University of Tokyo

Well oriented: Catalysts for isotactic polar polypropylenes

Japanese scientists developed a new approach that allows more suitable catalysts to be produced much more easily

Polypropylene (PP) is one of the most widely used plastics in the world. By controlling the spatial orientation of the propylene building blocks and additional polar components, it should be possible to create a new generation of attractive, engineered, specialty plastics, with improved wettability or enhanced degradability, based on PP. In the journal Angewandte Chemie, Japanese scientists have introduced the basis for a new class of palladium catalysts for such polymerizations.

The properties of PP depend largely on the spatial orientation of the individual monomers as they are added to the growing chain (tacticity). In atactic PP (aPP) the orientation is random. In syndiotactic PP (sPP) the CH(3)-side groups on the monomer alternately point toward the two sides of the polymer backbone. The most sought-after version--isotactic PP (iPP) in which all of the side groups point the same way--has particularly advantageous mechanical properties. Incorporation of additional functional, polar monomers into iPP is an important step toward the development of novel plastics.

This type of copolymerization is heavily restricted with conventional Ziegler-Natta and metallocene catalysts because typical polar monomers first need to be "masked". This means they must be attached to special protective groups. With nickel and palladium catalysts, it is possible to achieve this unmasked but with significant losses in isotacticity. There has been some success with special nickel and palladium phosphine complexes (a type of phosphorus-containing organic compound), though synthesis of these catalysts is arduous and time-consuming.

Researchers working with Kyoko Nozaki at the University of Tokyo have now developed a new approach that allows more suitable catalysts to be produced much more easily. The spatial orientation of propylene monomers during polymerization is influenced by the special spatial structure (stereogenicity) at certain carbon atoms in the organic menthol substituents on the phosphine. The researchers wanted to develop phosphine compounds that have the required stereogenicity at the phosphorus atom.

To avoid the tedious synthetic challenges faced to date, they developed significantly faster synthetic protocols using storable, modular building blocks and phosphinites (a class of organic compounds containing phosphorus and oxygen). This allowed for the rapid and easy synthesis of many different phosphines and their corresponding palladium complexes. A rapid screening process successfully yielded suitable catalyst candidates.

In this way, the scientists found catalysts that polymerize propylene with polar monomers to form copolymers with particularly high isotacticity--a material they called isotactic polar polypropylene (iPPP).

Facts, background information, dossiers
More about University of Tokyo
  • News

    Tips for making nanographene

    Nanographene is a material that is anticipated to radically improve solar cells, fuel cells, LEDs and more. Typically the synthesis of this material has been imprecise and difficult to control. For the first time, researchers have discovered a simple way to gain precise control over the fab ... more

    Better, safer batteries

    For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries. They successfully increased not only the voltage delivery of a lithium-ion battery but also its ability to suppress dangerous ... more

    The combination of plant-based particles and water forms an 'eco' super-glue

    In a study published in Advanced Materials, researchers at Aalto University, the University of Tokyo, Sichuan University, and the University of British Columbia have demonstrated that plant-derived cellulose nanocrystals (CNCs) can form an adhesive that fully integrates the concepts of sust ... more

More about Angewandte Chemie
  • News

    Anions Matter

    Metal-ion hybrid capacitors combine the properties of capacitors and batteries. One electrode uses the capacitive mechanism, the other the battery-type redox processes. Scientists have now scrutinized the role of anions in the electrolyte. The results, which have been published in the journ ... more

    Ultraheavy precision polymers

    An environmentally friendly and sustainable synthesis of "heavyweight" polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry. Thanks to a new photoenzymatic process, Chinese researchers have been able to increase the range of possible m ... more

    Palladium Catalysts Can Do Its

    Palladium catalysts help synthesize key chemicals for many industries. However, direct reaction of two basic reagents, aryl halides and alkyllithium compounds, remains a challenge. Now, a team of scientists have found that a catalyst containing YPhos-type ligands can mediate this reaction e ... more