16-Aug-2021 - University of Limerick

Crystals Made to Fit

Induced-fit adsorbent for acetylene

We often say that a substrate fits into its enzyme like a key in a lock, but this metaphor is imperfect. Substrate binding can also change the lock (the structure of the enzyme) to induce a perfect fit. In the journal Angewandte Chemie, an international team of researchers has now introduced a non-biological, crystalline material that demonstrates induced-fit binding behavior when it highly selectively takes up acetylene (C2H2) into its pores.

An induced-fit effect imitated from nature could be useful in increasing the selectivity of porous crystalline materials and to better handle difficult separation processes or gas separations, for example. Promising candidates include materials made of individual organic and/or inorganic linker molecules and metal ions as nodes. These could be metal–organic frameworks (MOFs) or hybrid ultramicroporous materials (HUMs), which are soft (less rigid) than classic porous materials like zeolites.

A team led by Susumu Kitagawa and Michael J. Zaworotko has now developed a novel type of soft HUM that can change its pores to allow acetylene molecules to fit into them perfectly. The material, called sql-SIFSIX-bpe-Zn, binds acetylene with unusual strength and allows for highly selective separation of acetylene from ethylene (C2H4), or carbon dioxide (CO2).

Highly pure acetylene is an important raw material for the chemical industry, including in the production of plastics, as well as microelectronics. Current production processes for acetylene produce impurities, such as ethylene and carbon dioxide, which are difficult and energy-intensive to remove. The new induced-fit adsorbent “recognizes” acetylene specifically as its guest molecule and alters its structure reversibly to form tight cavities with strong interactions and high binding energy for the guest.

This new HUM developed by the research team from the University of Limerick (Ireland), Kyoto University (Japan), Stellenbosch University (South Africa), and the University of South Florida (Tampa, USA) has a flexible framework comprised of hexafluorosilicate anions, flexible organic linking molecules, and zinc ions at the nodes. As determined by a variety of analytical methods and computer models, the transformations observed in the presence of acetylene primarily stem from interactions of the acetylene with the inorganic anions. This differs from other previously known examples of induced fit. It is expected that this adsorbent will have high separation efficiency and a low energy requirement for regeneration.

Based on the knowledge they have gained, the team hopes to develop further induced-fit materials for other types of guest molecules that are difficult to separate.

Facts, background information, dossiers
  • acetylene
  • material developments
More about University of Limerick
  • News

    Squeezing low-cost electricity from sustainable biomaterial

    Mobile phone speakers and motion detectors in cars and video games may soon be powered by electricity generated from low cost and sustainable biomaterials, according to research carried out at University of Limerick (UL), Ireland. Scientists at UL's Bernal Institute have discovered that the ... more

    New research could transform how we filter water

    A new process for water filtration using carbon dioxide consumes one thousand times less energy than conventional methods, scientific research published recently has shown. The research was led by Dr Orest Shardt of University of Limerick , Ireland together with Dr Sangwoo Shin (now at Univ ... more

More about Angewandte Chemie
  • News

    Step toward a Circular Economy?

    Polyethylene terephthalate (PET) is one of the most common plastics. Discarded PET most often ends up in landfills or in the environment because the rate of recycling remains low. In the journal Angewandte Chemie, a research team has now reported a zirconium-based metal–organic framework ma ... more

    High Output Voltage

    Proton batteries are an innovative and environmentally friendly type of battery in which charge is carried by protons, which are positively charged hydrogen ions. A team of researchers has now developed organic sulfonamides as a robust and flexible material for cathodes in these batteries. ... more

    How Is Haze Formed?

    Haze is formed when a cocktail of various gaseous pollutants is oxidized and forms particulate matter diffusing sunlight. This process is mainly mediated by hydroxyl radicals (OH), and researchers have now discovered a new route to their formation. This newly discovered radical-building mec ... more