03-Sep-2021 - Max-Planck-Institut für Kolloid- und Grenzflächenforschung

First programmable photocatalyst developed

With smart materials toward more sustainable chemistry

Researchers at the Max Planck Institute of Colloids and Interfaces have developed a sustainable and "smart photocatalyst". The special feature: as a so-called smart material, it can distinguish between the colors of light (blue, red and green) and, in response, enables a specific chemical reaction programmed into it. "Our smart photocatalyst functions as a traffic guide who opens one specific pathway in response to light of specific color," says Dr. Yevheniia Markushyna, first author of the paper.

Photocatalysts are special materials that use the energy from sunlight or LED light to enable a desired reaction. Often, this results in not just one product, but a variety. Chemists call this "poor selectivity" because separation of the desired product from the mixture consumes time and resources.

Quite different with the new method developed at the Max Planck Institute, which enables the research team for instance to synthesize sulfonamides in a targeted manner. Sulfonamides are organosulfur compounds that are used, among other things, as antibiotics to treat bacterial infections. The researchers have created a photocatalytically active carbon nitride material that produces with high selectivity sulfonamides. With the help of the sustainable "smart photocatalyst," one product is created selectively from three possible from the same reagent by adjusting the color of the incident light. "The special feature is that we can control the selectivity of the chemical reaction by turning on the light bulb of the right color," says Dr. Yevheniia Markushyna. "Today, we have sustainable smart photocatalysts and the knowledge to produce value-added organic compounds using solar light in the most efficient way possible," says Dr. Aleksandr Savateev, group leader and head of the photocatalysis study recently published in the journal Angewandte Chemie. He adds, "Potentially, our method could also make the production of sulfonamide antibiotics more sustainable."

Function

Complex biological objects, such as the human eye or state-of-the-art cameras in electronic devices can perceive light colors. It is a great challenge to develop "smart molecules" consisting of only tens of atoms. Such molecule must not only recognize the light colors (blue, red and green), but also perform a certain “programmed” action that depends on the specific light color.

Facts, background information, dossiers
  • photocatalysts
  • chemical reactions
  • sulfonamides
More about MPI für Kolloid- und Grenzflächenforschung
More about Max-Planck-Gesellschaft
  • News

    How do we want to heat our homes in the future?

    The question of heating is becoming increasingly important in times of scarce resources and of global warming. Are oil heating systems still future-proof? Moreover, if so, can they be operated with efficient, sustainable fuels? Researchers are striving to make heating with oil more sustaina ... more

    225 million euros for start-ups of the Max Planck Society

    A successful business year for Max Planck Innovation includes increasing investment sums for the start-ups managed. Especially life sciences start-ups with a high degree of maturity provided a record sum of 225 million euros. Companies in the Max Planck Innovation investment portfolio raise ... more

    Stalactites and stalagmites in the battery?

    They are considered the "Holy Grail" of battery research: so-called "solid-state batteries". They no longer have a liquid core, as is the case with today's batteries, but consist of a solid material. This leads to several advantages: Among other things, these batteries are more difficult to ... more

  • Research Institutes

    Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

    The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universiti ... more