27-Sep-2021 - Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM)

Greening the Internet of Things

The demand for connected devices keeps growing – Fraunhofer project has shown how all of these sensor systems can become extremely energy efficient or even completely autonomous

Sensors have become the ubiquitous companions of our lives. Whether knowingly or not, we use them every day to collect, process, and interpret data and help us make sense of the world around us. The demand for connected devices keeps growing – in particular in the Internet of Things, or IoT for short. The Fraunhofer flagship project ZEWOPEL has shown successfully how all of these sensor systems can become extremely energy efficient or even completely autonomous. The potential result: Up to 20% less carbon emissions in Germany alone.

With billions of sensors littering our increasingly connected world, their power supplies have become a factor to contend with for the environment, especially for industrial use. Many of the devices that constitute the Internet of Things are already intricately tied to each other, with a mass of sensors forming individual nodes. Early IoT devices would communicate with each other and share their data with little concern for energy efficiency, making many of the urgently needed IoT applications too heavy a burden on the environment for them to be rolled out on a true industrial scale or indeed making them unsuitable choices for upgrading. Now, the nine Fraunhofer organizations behind the ZEWOPEL project, standing for “Towards Zero Power Electronics”, have shown that the digital revolution and the energy revolution do not have to exclude each other.

With years of active research and development on everything from integrated sensors and signal processing or energy harvesting and improved storage technologies to efficient wireless communication between connected IoT devices, the ZEWOPEL platform was set up to optimize the entire universe of IoT systems. Its unique approach relied not only on its use of modular technology that can be tailored to match most IoT applications, but also on the ability of future sensor nodes to become autonomous of external power supplies.

The project partners’ work was put to the test in two characteristic use cases of the Internet of Things: Smart cities and smart fabrication. For the former, autonomous sensor nodes would monitor air quality, such as nitrous oxide or fine particulate emissions, in real time and with exceptional energy efficiency. In smart factories, IoT nodes would be the backbone of a connected production system that tracks and controls the state of machines, engines, or pumps. In particular when machines idle, this ability to respond immediately could help reduce the overall energy consumption by a massive margin.

All contributors to the project convened for the concluding session of the ZEPOWEL project to present their shared results and commercialization strategy to a high-profile audience of experts from industry and academia. The potential use cases for the proposed sensors are vast and diverse, reaching from modern agriculture and manufacturing to holistic systems for a more powerful and sustainable Internet of Things.

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM)

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers
  • sensors
  • Internet of Things
  • energy efficiency
More about Fraunhofer-Institut IZM
  • News

    Tracking down polluters

    Proving criminal machinations can be difficult – for instance when those involved covertly discharge hazardous wastewater into sewers. A new sensor system developed by Fraunhofer researchers and their partners could soon help safety agencies establish wrongdoing: placed in a sewage canal, i ... more

  • Companies

    Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM)

    The Fraunhofer-Gesellschaft is the leading organization for institutes of applied research in Europe, undertaking contract research on behalf of industry, the service sector and the government. Commissioned by customers in industry, it provides rapid, economical and immediately applicable s ... more

More about Fraunhofer-Gesellschaft
  • News

    Localized growth of silicon crystals

    Four scientists from Freiburg have succeeded for the first time to simulate the localized growth of silicon crystals using shear-induced amorphization and recrystallization. In the future, experts could use this concept to tailor crystalline silicon structures for nanotechnology application ... more

    Thermal storage for the energy transition

    In Germany, 55 percent of final energy consumption goes towards heating and cooling. However, a lot of heat dissipates unused because it is not generated as and when required. Thermal storage using zeolite material allows heat to be stored for long periods of time without losing any. Fraunh ... more

    New catalysts for fuel cells

    Fuel cells are typically applied to generate electrical energy from hydrogen or methanol. Nanoscale catalysts get the process going - but until now, the quality of these materials has varied significantly. The CAN research division of the Fraunhofer Institute for Applied Polymer Research IA ... more