04-Apr-2022 - University of Illinois at Chicago

Scavenger nanoparticles could make fuel cell-powered vehicles a reality

New material prevents inexpensive catalysts from degrading

Engineers at the University of Illinois Chicago are among a collaborative team that has developed a material that could give fuel cell systems a competitive edge over the battery systems that currently power most electric vehicles. 

In contrast to lithium batteries, fuel cell technology relies on catalyst-driven chemical reactions to create energy. Lithium batteries can typically achieve a range of 100-300 miles on one charge, but they also are vulnerable to the high cost of cathode materials and manufacturing and require several hours to charge. Alternatively, fuel cell systems take advantage of abundant elements such as oxygen and hydrogen and can achieve more than 400 miles on a single charge – which can be done in under five minutes. Unfortunately, the catalysts used to power their reactions are made of materials that are either too expensive (i.e., platinum) or too quickly degraded to be practical. 

Until now, that is. With the development of the new additive material, scientists can make an inexpensive iron-nitrogen-carbon fuel cell catalyst more durable. When added to the chemical reactions, the additive material protects fuel cell systems from two of its most corrosive byproducts: unstable particles like atoms, molecules or ions called free radicals and hydrogen peroxide. Findings from their experiments are reported in the science journal Nature Energy

Reza Shahbazian-Yassar, professor of mechanical and industrial engineering at the UIC College of Engineering, and colleagues used advanced imaging techniques to investigate the reactions with the material, an additive comprised of tantalum-titanium oxide nanoparticles that scavenge and deactivate the free radicals. The high-resolution imaging of the atomic structures allowed the scientists to define the structural parameters needed for the additive to work. 

“In our lab, we are able to use electron microscopy to capture highly detailed, atomic-resolution images of the materials under a variety of service conditions,” said study co-corresponding author Shahbazian-Yassar. “Through our structural investigations, we learned what was happening in the atomic structure of additives and were able to identify the size and dimensions of the scavenger nanoparticles, the ratio of tantalum and titanium oxide. This led to an understanding of the correct state of the solid solution alloy required for the additive to protect the fuel cell against corrosion and degradation.”  

Experiments revealed that a solid solution of tantalum and titanium oxide is required and that the nanoparticles should be around five nanometers. The experiments also revealed that a 6-4 ratio of tantalum to titanium oxide is required. 

“The ratio is the key to the radical scavenging properties of the nanoparticle material and the solid-state solution helped sustain the structure of the environment,” Shahbazian-Yassar said. 

The experiments showed that when the scavenger nanoparticle material was added to the reactions of fuel cell systems, hydrogen peroxide yield was suppressed to less than 2% — a 51% reduction — and current density decay of fuel cells was reduced from 33% to only 3%. 

“Fuel cells are an attractive alternative to batteries because of their higher driving range, fast recharging capabilities, lighter weight, and smaller volume, provided that we can find more economical ways to separate and store hydrogen,” Shahbazian-Yassar said. “In this paper, we report on an approach that gets us much closer to making fuel cell-powered vehicles and other fuel cell technologies a reality.”

Facts, background information, dossiers
More about UIC
  • News

    Developing tech to eliminate ‘forever chemicals’ from water

    Engineers at the University of Illinois Chicago have been awarded just over $1 million from the U.S. Department of Energy’s National Alliance for Water Innovation to build a system that selectively removes and destroys poly- and perfluorinated substances, commonly called PFAS and referred t ... more

    Scientists develop environmentally safe, frost-resistant coatings

    Airports are busy, especially during the winter. As passengers wait to board, delays get longer when airplanes need to be dowsed with thousands of gallons of deicing fluids that help them fight the frigid winter. But as soon as the plane takes off, most of the liquid is gone from the surfac ... more

    Revolutionizing carbon capture technology

    Engineers at the University of Illinois Chicago have built a cost-effective artificial leaf that can capture carbon dioxide at rates 100 times better than current systems. Unlike other carbon capture systems, which work in labs with pure carbon dioxide from pressurized tanks, this artificia ... more

  • Videos

    'Winter Soldier': On Cheating The Negatives

    A family of frost-resistant and icephobic coatings are a longer-lasting alternative to conventional deicers. The coatings are a family of phase change material-based formulations and multifunctional coatings which can tailor solid foulant adhesion on functional surfaces, ranging from ice to ... more