14-Sep-2022 - Georg-August-Universität Göttingen

Making and breaking of chemical bonds in single “nanoconfined” molecules

Research team investigates reactivity of single molecules under controlled microscopic conditions

Researchers around the world are working to develop efficient materials to convert CO2 into usable chemical substances – work that is particularly pressing in view of global warming. A team from the University of Göttingen, Germany, and the Ulsan National Institute for Science, South Korea, has discovered a new and promising approach: catalytically active molecules are nanoconfined – meaning they are put into an environment that leaves very little space for the single molecules – on a surface that serves as a conductive electron supplier. These molecules promote specific chemical reactions. Such hybrid systems make use of both the properties of the molecules and the properties of the substrate. The results were published in Science Advances.

The first step for the team was to deposit the catalytically active molecules as a vapour onto polished silver before examining them with a high-resolution scanning tunneling microscope built in Göttingen. "To our absolute astonishment, the molecules arrange themselves, as if by magic, into almost perfect single-layer structures on the surface," says Lucas Paul, PhD student, University of Göttingen, and co-author of the study.

"In addition to imaging individual molecules, the energy of the injected electrons can be adjusted so precisely in the scanning tunneling microscope that chemical reactions can be induced and observed in a single molecule," explains physicist Professor Martin Wenderoth. Wenderoth led the project together with chemist Professor Inke Siewert, at the University of Göttingen’s Collaborative Research Centre ‘Atomic Scale Control of Energy Conversion’. Siewert adds, "We are able to very precisely break individual chemical bonds."

The researchers show that molecules that are particularly densely packed on the surface have altered chemical properties. Thus, exclusively for the "trapped" molecules the bond can be broken and subsequently also restored, since the separated part of the molecule can only move very slightly away from the rest of the molecule. "This shows how a lack of space, at an atomic level, can be used to manipulate chemical reactions," says first author Ole Bunjes, University of Göttingen.

The research team wants their experiments to contribute to the development of efficient molecular surface systems with precisely determined properties. In addition, they want to investigate whether their new system is suitable as a molecular data memory.

Facts, background information, dossiers
  • material developments
  • chemical reactions
More about Uni Göttingen
  • News

    Unexpected quantum effects in natural double-layer graphene

    An international research team led by the University of Göttingen has detected novel quantum effects in high-precision studies of natural double-layer graphene and has interpreted them together with the University of Texas at Dallas using their theoretical work. This research provides new i ... more

    Building blocks of the future for photovoltaics

    An international research team led by the University of Göttingen has, for the first time, observed the build-up of a physical phenomenon that plays a role in the conversion of sunlight into electrical energy in 2D materials. The scientists succeeded in making quasiparticles – known as dark ... more

    Quantum chemistry on the test bench

    In the future, more and more drugs, materials and catalysts will be designed, tested and developed using computer simulations alone. However, this will require algorithms that are accurate enough to predict real-life chemistry. One particular example is catalysis, where elementary rate cons ... more

More about UNIST