C–H functionalisation at room temperature

18-Oct-2010 - United Kingdom

British chemists have moved a step closer to conquering a significant synthetic challenge by developing a C–H bond functionalisation reaction that can generate a diversity of molecular frameworks at room temperature.

A broad range of C–H transformations can be catalysed by a variety of transition metals at high temperatures. But Matthew Gaunt’s group at the University of Cambridge aims to develop a synthetic toolbox comprising mild metal-catalysed C–H functionalisation reactions to make it easier to make complex molecules.

They investigated the reactions of beta-arylethylamine, a motif commonly found in medicines and natural products. Attempts to catalytically transform the phenylalanine ethyl ester had previously failed but when the group introduced an aryl group onto the amine system, they were able to carbonylate, arylate and aminate the C–H bond. The reaction works on a variety of substrates and is tolerant of stereogenic centres and complex functionality.

Original publication: Benjamin Haffemayer, Moises Gulias and Matthew J. Gaunt, Chemical Science, 2010

Other news from the department science

Most read news

More news from our other portals

Discover the latest developments in battery technology!