22-Feb-2016 - University of Adelaide

Stretchable nano-devices towards smart contact lenses

Researchers at RMIT University and the University of Adelaide have joined forces to create a stretchable nano-scale device to manipulate light.

The device manipulates light to such an extent that it can filter specific colours while still being transparent and could be used in the future to make smart contact lenses.

Using the technology, high-tech lenses could one day filter harmful optical radiation without interfering with vision - or in a more advanced version, transmit data and gather live vital information or even show information like a head-up display.

The light manipulation relies on creating tiny artificial crystals termed "dielectric resonators", which are a fraction of the wavelength of light - 100-200 nanometers.

The research combined the University of Adelaide researchers' expertise in interaction of light with artificial materials with the materials science and nanofabrication expertise at RMIT University.

Dr Withawat Withayachumnankul, from the University of Adelaide's School of Electrical and Electronic Engineering, said: "Manipulation of light using these artificial crystals uses precise engineering.

"With advanced techniques to control the properties of surfaces, we can dynamically control their filter properties, which allow us to potentially create devices for high data-rate optical communication or smart contact lenses.

"The current challenge is that dielectric resonators only work for specific colours, but with our flexible surface we can adjust the operation range simply by stretching it."

Associate Professor Madhu Bhaskaran, Co-Leader of the Functional Materials and Microsystems Research Group at RMIT, said the devices were made on a rubber-like material used for contact lenses.

"We embed precisely-controlled crystals of titanium oxide, a material that is usually found in sunscreen, in these soft and pliable materials," she said.

"Both materials are proven to be bio-compatible, forming an ideal platform for wearable optical devices.

"By engineering the shape of these common materials, we can create a device that changes properties when stretched. This modifies the way the light interacts with and travels through the device, which holds promise of making smart contact lenses and stretchable colour changing surfaces."

Lead author and RMIT researcher Dr. Philipp Gutruf said the major scientific hurdle overcome by the team was combining high temperature processed titanium dioxide with the rubber-like material, and achieving nanoscale features.

"With this technology, we now have the ability to develop light weight wearable optical components which also allow for the creation of futuristic devices such as smart contact lenses or flexible ultra thin smartphone cameras," Gutruf said.

Facts, background information, dossiers
More about University of Adelaide
  • News

    New catalyst paves way for carbon neutral fuel

    Australian scientists have paved the way for carbon neutral fuel with the development of a new efficient catalyst that converts carbon dioxide (CO2) from the air into synthetic natural gas in a 'clean' process using solar energy. Undertaken by University of Adelaide in collaboration with CS ... more

    Bacteria with Midas touch for efficient gold processing

    Special 'nugget-producing' bacteria may hold the key to more efficient processing of gold ore, mine tailings and recycled electronics, as well as aid in exploration for new deposits, University of Adelaide research has shown. For more than 10 years, University of Adelaide researchers have b ... more

    Diagnosis just a breath away with new laser

    University of Adelaide physics researchers have developed a new type of laser that will enable exciting new advances in areas as diverse as breath analysis for disease diagnosis and remote sensing of critical greenhouse gases. Published in the journal Optics Letters, the researchers from th ... more

More about RMIT University
  • News

    New butterfly-inspired hydrogen sensor is powered by light

    Inspired by the surface of butterfly wings, researchers have developed a light-activated hydrogen sensor that produces ultra-precise results at room temperature. The technology can detect hydrogen leaks well before they pose safety risks and can measure tiny amounts of the gas on people's b ... more

    Making biodiesel from dirty old cooking oil just got way easier

    Researchers have developed a powerful, low-cost method for recycling used cooking oil and agricultural waste into biodiesel, and turning food scraps and plastic rubbish into high-value products. The method harnesses a new type of ultra-efficient catalyst that can make low-carbon biodiesel a ... more

    Branching out: Making graphene from gum trees

    Graphene is the thinnest and strongest material known to humans. It's also flexible, transparent and conducts heat and electricity 10 times better than copper, making it ideal for anything from flexible nanoelectronics to better fuel cells. The new approach by researchers from RMIT Universi ... more