To use all functions of this page, please activate cookies in your browser.

my.chemeurope.com

With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.

- My watch list
- My saved searches
- My saved topics
- My newsletter

## BosonIn particle physics, While most bosons are composite particles, four bosons (the gauge bosons) are elementary particles not known to be composed of other particles. The only two bosons in the Standard Model that are yet to be discovered experimentally are the Higgs boson and the graviton. ## Additional recommended knowledge
## Basic propertiesAll elementary and composite particles are either bosons or fermions, depending on their spin. Particles with half-integer spin are fermions; particles with integer spin are bosons. The spin-statistics theorem identifies the resulting quantum statistics that differentiate fermions and bosons. Bosons obey Bose–Einstein statistics. Fermions, on the other hand, cannot occupy the same quantum state as each other; they obey the Fermi-Dirac statistics and the Pauli exclusion principle. They "resist" being placed close to each other. So, fermions possess "rigidness" and thus sometimes are considered to be "particles of matter". The properties of lasers and masers, superfluid helium-4 and Bose–Einstein condensates are all consequences of statistics of bosons. Another result is that the spectrum of a photon gas in thermal equilibrium is a Planck spectrum, one example of which is black-body radiation; another is the thermal radiation of the opaque early Universe seen today as microwave background radiation). Interaction of virtual bosons with real fermions are called fundamental interactions, and these result in all forces we know. The bosons involved in these interactions are called gauge bosons. These include the W and Z bosons of the weak force, the gluons of the strong force, the photons of the electromagnetic force, and, in quantum gravity, the graviton of the gravitational force. In large systems, the difference between bosonic and fermionic statistics is only apparent at large densities—when their wave functions overlap. At low densities, both types of statistics are well approximated by Maxwell-Boltzmann statistics, which is described by classical mechanics. ## Composite bosonsParticles composed of a number of other particles (such as protons, neutrons or nuclei) can be either fermions or bosons, depending on their total spin. Hence, many nuclei are bosons. For instance, consider Composite bosons exhibit bosonic behavior only at distances large compared to their structure size. At a small distance they behave according to properties of their constituent particles. For example, despite the fact that an alpha particle is a boson, at high energy it interacts with another alpha particle not as a boson but as an ensemble of fermions. ## Examples of bosons- Photons, which mediate the electromagnetic force
- W and Z bosons, which mediate the weak nuclear force
- Gluons
- Higgs bosons
- Phonons
- Cooper pairs
## See also- Bosonic field
- Bose gas *Fermions
- Identical particles *List of particles
- Parastatistics *Tonks-Girardeau gas
- Standard model *Superconductivity
## References**^**Standard Model of Particle Physics at Standford Linear Collider
- Sakurai, J.J. (1994).
*Modern Quantum Mechanics*(Revised Edition), pp 361-363. Addison-Wesley Publishing Company.__ISBN 0-201-53929-2__.
Categories: Atomic physics | Bosons | Condensed matter physics |
|||||||||||||

This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Boson". A list of authors is available in Wikipedia. |