07-Jul-2009 - Technische Universität Chemnitz

Printable batteries

In the past, it was necessary to race to the bank for every money transfer and every bank statement. Today, bank transactions can be easily carried out at home. Now where is that piece of paper again with the TAN numbers? In the future you can spare yourself the search for the number. Simply touch your EC card and a small integrated display shows the TAN number to be used. Just type in the number and off you go. This is made possible by a printable battery that can be produced cost-effectively on a large scale. It was developed by a research team led by Prof. Dr. Reinhard Baumann of the Fraunhofer Research Institution for Electronic Nano Systems ENAS in Chemnitz together with colleagues from TU Chemnitz and Menippos GmbH. "Our goal is to be able to mass produce the batteries at a price of single digit cent range each," states Dr. Andreas Willert, group manager at ENAS.

The characteristics of the battery differ significantly from those of conventional batteries. The printable version weighs less than one gram on the scales, is not even one millimeter thick and can therefore be integrated into bank cards, for example. The battery contains no mercury and is in this respect environmentally friendly. Its voltage is 1.5 V, which lies within the normal range. By placing several batteries in a row, voltages of 3 V, 4.5 V and 6 V can also be achieved. The new type of battery is composed of different layers: a zinc anode and a manganese cathode, among others. Zinc and manganese react with one another and produce electricity. However, the anode and the cathode layer dissipate gradually during this chemical process. Therefore, the battery is suitable for applications which have a limited life span or a limited power requirement.

The batteries are printed using a silk-screen printing method similar to that used for t-shirts and signs. A kind of rubber lip presses the printing paste through a screen onto the substrate. A template covers the areas that are not to be printed on. Through this process it is possible to apply comparatively large quantities of printing paste, and the individual layers are slightly thicker than a hair. The researchers have already produced the batteries on a laboratory scale. At the end of this year, the first products could possibly be finished.

Facts, background information, dossiers
More about TU Chemnitz
  • News

    Tracking Topological Conditions in Graphene

    Scientists have already been able to demonstrate that graphene nanostructures can be generated by annealing of a nanostructured silicon carbide crystal for a few years. “These two-dimensional, spatially strongly restricted carbon bands exhibit a vanishingly small electrical resistance even ... more

    Ionic defect landscape in perovskite solar cells revealed

    The group of so-called metal halide perovskites as materials has revolutionized the field of photovoltaics in recent years. Generally speaking, metal halide perovskites are crystalline materials that follow the structure ABX3, with varying composition. Here, A, B, and X can represent a comb ... more

    Conductor turned insulator amid disorder

    Some materials that are inherently disordered display unusual conductivity, sometimes behaving like insulators and sometimes like conductors. Physicists have now analysed the conductivity in a special class of disordered materials. Martin Puschmann from the Technical University Chemnitz, Ge ... more

More about Fraunhofer-Gesellschaft
  • News

    Stepstone for sustainable batteries – greener carbons

    Lithium-ion batteries require in addition to lithium metal a number of sophisticated functional materials for their performance. Some of them sound rather unspectacular: conductive additives. In fact, conductive additives like carbon black or carbon nanotubes are a decisive component for th ... more

    Polypropylene recycling from carpet waste

    A significant part of carpet waste consists of petroleum-based polypropylene. As a non-recyclable product, disposing of it has previously meant incineration or landfill. However, a new solvent is now making it possible to recover virgin-standard polypropylene from carpet waste — with no per ... more

    Enzymes successfully embedded in plastics

    In general, plastics are processed at way over a hundred degrees Celsius. Enzymes, by contrast, cannot usually withstand these high temperatures. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP have managed to reconcile these contradictions: They are able to embed e ... more