19-Jun-2018 - Technische Universität München

More than just a good flavor

Flavoring substances stimulate immune defenses

Not only do citric acid and spicy 6-gingerol from ginger add special flavors to food and beverages; both substances also stimulate the molecular defenses in human saliva. That is the result of a human clinical trial by a team from the Technical University of Munich (TUM) and the Leibniz-Institute for Food Systems Biology.

Human saliva is a complex, watery mixture made up of vastly different components. In addition to mucosal and immune cells, it contains a large number of molecules that perform a wide variety of biological functions. Not only does saliva play an important role in dietary intake, but it is also crucial to maintaining the health of one’s teeth, gums, and oral mucosa.

At the same time, it also represents the first bulwark against external pathogens. For this purpose, saliva contains various antimicrobial molecules, including the antibacterial lysozyme. These are part of the innate molecular immune system.

It has been proven that factors such as age, health, and what someone eats and drinks influence the composition of saliva. However, little is known about the effects of individual food constituents.

In order to learn more about this, a team of scientists led by Professor Thomas Hofmann, head of the Leibniz-Institute for Food Systems Biology at TUM, studied the influence of the following flavors on the composition of human saliva: citric acid (sour), the sweetener aspartame (sweet), iso-alpha acids (bitter), the flavor enhancer monosodium glutamate (umami), table salt (salty), 6-gingerol (spicy), and the substances contained in Sichuan pepper —hydroxy-alpha-sanshool (tingling) and hydroxy-beta-sanshool (numbing).

How the Molecular Defense System is Activated in Saliva

As the scientists first demonstrated by combining salivary flow measurements, proteome analyses and bioinformatic evaluations, all the substances under investigation modulate the protein composition of saliva to a greater or lesser extent.

Analyses of the biological function of the salivary proteins affected by modulation also showed that the changes triggered by citric acid and 6-gingerol activate the molecular defense system in saliva.

For example, 6-gingerol increased the activity of an enzyme that converts the thiocyanate contained in saliva into hypothiocyanite, approximately tripling the amount of the antimicrobial and fungicidal hypothiocyanite in saliva. The changes triggered by citric acid, on the other hand, caused lysozyme levels in saliva to increase tenfold.

Studies on bacterial cultures have shown for the first time that this increase is sufficient to almost completely prevent the growth of Gram-positive bacteria. Lysozyme acts against this type of bacteria by destroying their cell walls.

“Our new findings show that flavoring substances already display biological effects in the oral cavity that go far beyond their known sensory properties,” said Professor Hofmann from the Department of Food Chemistry and Molecular Sensory Science at TUM. The food chemist explains that one of the goals of food systems biology is to further investigate these using the latest analytical methods. In his opinion, this is the only way to find new approaches for the long-term production of food whose ingredient and function profiles are aligned with the health and sensory needs of consumers.

Facts, background information, dossiers
  • 6-gingerol
  • thiocyanates
  • ginger
  • aspartame
  • food
  • hypothiocyanates
  • lysozymes
  • monosodium glutamate
  • hydroxy-alpha-sanshool
More about TU München
  • News

    Productive Cascade

    Starting from available chemicals, a German team of researchers successfully completed the total synthesis of agarozizanol B, an interesting natural substance found in agarwood. As described in the journal Angewandte Chemie, the key sequence in the relatively short synthetic pathway is a ph ... more

    Catalyzing the conversion of biomass to biofuel

    Zeolites are extremely porous materials: Ten grams can have an internal surface area the size of a soccer field. Their cavities make them useful in catalyzing chemical reactions and thus saving energy. An international research team has now made new findings regarding the role of water mole ... more

    New light on making two-dimensional polymers

    An international research team led by members from the Technical University of Munich, the Deutsches Museum, the Linköping University has developed a method to manufacture two-dimensional polymers with the thickness of a single molecule. The polymers are formed on a surface by the action of ... more

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... more