My watch list
my.chemeurope.com  
Login  

Nanotechnology and sunlight clear the way for better visibility

07-Mar-2019

ETH Zürich / Christopher Walker

In the ETH lab, shining a light through the centre of a transparent pane coated with nanoparticles prevents the lit area from fogging.

A new coating developed by ETH researchers prevents fogging on transparent surfaces. Rather than using electricity, the coating relies on sunlight to heat the surface.

Anyone who skis, wears glasses, uses a camera or drives a car is familiar with the problem: if you come into a humid environment from the cold, your eyewear, camera lens or windshield can quickly fog up. Researchers at ETH Zurich have now developed a new transparent material coating that greatly reduces this effect. Just a few nanometres thick, their durable coating is made of gold nanoparticles embedded in non-conductive titanium oxide.

“Our coating absorbs the infrared component of sunlight along with a small part of the visible sunlight and converts the light into heat,” explains Christopher Walker, a doctoral student in ETH Professor Dimos Poulikakos’s group and lead author of the study. This heats the surface up by 3 to 4 degrees Celsius. It is this difference in temperature that prevents fogging.

Passive heating

Heat is also the answer to the problem of fogging on car windows. Warm air from the in-vehicle heating system heats the front windscreen, while the rear window is fitted with a grid of electrical heating elements. But unlike these methods, the ETH researchers’ new coating works passively. Since the only energy source required is the sun, their coating is especially suitable for wearable items such as glasses and goggles.

Efstratios Mitridis, another doctoral student in Poulikakos’s group, explains what makes the new surface coating so special: “Normally, it’s dark surfaces that absorb light and convert it into heat,” he says, “but we’ve created a transparent surface that has the same effect.”

Better than anti-fog sprays

Condensation occurs on a surface whenever there is a sudden drop in temperature or increase in humidity, forming tiny droplets of water that disperse incident light in different directions in much the same way as atmospheric fog. As an alternative to using heat to prevent fogging, susceptible surfaces can be coated with hydrophilic agents. Because they attract water, these agents ensure that the condensation forms an even thin film of liquid over the surface rather than separate droplets. Anti-fog sprays for glasses usually work on this principle.

Now, tests have shown that when exposed to sunlight, fogged surfaces coated with gold nanoparticles and titanium oxide clear four times faster than surfaces treated with a normal anti-fog agent. “Spray treatments often lose their effect after a while because the anti-fog film dries up or becomes unevenly distributed,” Walker says. “A durable coating like ours lasts much longer than a spray treatment, which you have to apply virtually on a daily basis,” he adds.

The ETH scientists are now planning to bring their new method to market, in collaboration with a partner from industry. “We’re looking to refine our already robust coating to ensure it lasts for years, and we want to take the technology from lab scale to industry scale,” Walker says. Their coating has a huge range of potential applications, including car windshields and rear-view mirrors as well as ski goggles and diving masks.

Facts, background information, dossiers
More about ETH Zürich
  • News

    Using industrial waste as insulation for buildings

    ETH spinoff FenX transforms industrial waste into a porous foam suitable for building insulation. Unlike other sustainable materials used for the purpose, this type of insulation is non-flammable and inexpensive to produce. No sooner does one of the four young men come up with the idea than ... more

    Deep learning, prefabricated

    Self-driving cars, the automatic detection of cancer cells, online translation: deep learning makes it all possible. The ETH spin-off Mirage Technologies has developed a deep learning platform that aims to help start-ups and companies more quickly develop and optimise their products. The na ... more

    Mini-spectrometer: Smaller than a coin

    ETH researchers have developed a compact infrared spectrometer. It’s small enough to fit on a computer chip but can still open up interesting possibilities – in space and in everyday life. Nowadays, a mobile phone can do almost anything: take photos or video, send messages, determine its pr ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE