11-Mar-2014 - University of Notre Dame

Notre Dame chemists discover new class of antibiotics

A team of University of Notre Dame researchers led by Mayland Chang and Shahriar Mobashery have discovered a new class of antibiotics to fight bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant bacteria that threaten public health. Their research is published in the Journal of the American Chemical Society in an article titled "Discovery of a New Class of Non-beta-lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive Antibacterial Activity."

The new class, called oxadiazoles, was discovered in silico (by computer) screening and has shown promise in the treatment of MRSA in mouse models of infection. Researchers who screened 1.2 million compounds found that the oxadiazole inhibits a penicillin-binding protein, PBP2a, and the biosynthesis of the cell wall that enables MRSA to resist other drugs. The oxadiazoles are also effective when taken orally. This is an important feature as there is only one marketed antibiotic for MRSA that can be taken orally.

MRSA has become a global public-health problem since the 1960s because of its resistance to antibiotics. In the United States alone, 278,000 people are hospitalized and 19,000 die each year from infections caused by MRSA. Only three drugs currently are effective treatments, and resistance to each of those drugs already exists.

The researchers have been seeking a solution to MRSA for years. "Professor Mobashery has been working on the mechanisms of resistance in MRSA for a very long time," Chang said. "As we understand what the mechanisms are, we can devise strategies to develop compounds against MRSA."

"Mayland Chang and Shahriar Mobashery's discovery of a class of compounds that combat drug resistant bacteria such as MRSA could save thousands of lives around the world. We are grateful for their leadership and persistence in fighting drug resistance," said Greg Crawford, dean of the College of Science at the University of Notre Dame.

Facts, background information, dossiers
  • infections
  • inhibitors
  • Staphylococcus aureus
  • antibiotics
  • University of Notre Dame
More about University of Notre Dame
  • News

    Engineers develop prototype of electronic nose

    There’s nothing like the smell of freshly brewed coffee in the morning. But how does one measure that smell? There’s no energy in a smell to help estimate how potent the coffee might be. Instead, it’s the gases emitted from brewed coffee that contribute to the invigorating scent. The human ... more

    Use of PFAS in cosmetics 'widespread'

    Many cosmetics sold in the United States and Canada likely contain high levels of per- and polyfluoroalkyl substances (PFAS), a potentially toxic class of chemicals linked to a number of serious health conditions, according to new research from the University of Notre Dame. Scientists teste ... more

    Designing a better superconductor with geometric frustration

    Superconductors contain tiny tornadoes of supercurrent, called vortex filaments, that create resistance when they move. This affects the way superconductors carry a current. But a magnet-controlled "switch" in superconductor configuration provides unprecedented flexibility in managing the l ... more