05-Sep-2017 - Université Libre de Bruxelles

Molecules move faster near sticky surfaces

Molecules move faster as they get closer to adhesive surfaces, but this effect is not permanent

Molecules move faster as they get closer to adhesive surfaces, but this effect is not permanent. Such is the puzzling conclusion of a study published in Physical Review Letters, carried out by Simone Napolitano and his colleagues in the Laboratory of Polymers and Soft Matter Dynamics at the Université libre de Bruxelles.

Since more than 20 years, several researchers have been studying the behaviour of certain polymers, biomolecules, and liquid crystals at the nano-scale near an absorbing medium. In this case we would expect slower movement rates, but the experiments showed the opposite: molecules move faster as they get closer to an adhesive surface. According to the research team of ULB, this odd movement is due to a phenomenon known as the 'nanoconfinement effect': the molecules that are in direct contact with the adhesive surface do move slower, or even not at all, but this in turn increases the movement rate of the next molecules, as they have more free space around them.

Now, writing in PRL, Napolitano and coworkers show that this effect is only temporary: movement rate gradually slows down as new molecules adhere to the surface and fill in the spaces left. After a while, molecules move as if they were far from the adhesive surface. Importantly, the time necessary to return to normal molecular movement rate is longer than what would be predicted by any current theory of polymer physics.

As a result, the researchers propose that the amount of available space at the interface between polymer and sticky wall is an important parameter to control the behaviour of nanomaterials.

Facts, background information, dossiers
More about Université Libre de Bruxelles
  • News

    Molecules move faster on a rough terrain

    Roughness, the presence of irregularities on a surface, is commonly associated to slower motion and stickiness. This is true at different length scales: at human size (1 meter), it takes longer to walk along a path that goes up and down, rather than walking on a flat road. At the size of sm ... more

    Does nanoconfinement affect the interaction between two materials placed in contact?

    Scientists show that is it possible to estimate how nanoconfinement affects the number of contacts formed by two materials placed in intimate contact and, hence, the interfacial interactions. They considered wafers of silicon, as those largely used in microelectronics, coated by thin polyme ... more

    The Nobel Prize in Physics 2013: How particles acquire mass

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was conf ... more