17-Jun-2019 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

New solar mini-refinery

Carbon-neutral fuel made from sunlight and air: Two spin-offs already founded

Researchers from ETH Zurich have developed a novel technology that produces liquid hydrocarbon fuels exclusively from sunlight and air. For the first time worldwide they demonstrate the entire thermochemical process chain under real field conditions. The new solar mini-refinery is located on the roof of ETH’s Machine Laboratory building in Zurich.

Carbon-neutral fuels are crucial for making aviation and maritime transport sustainable. ETH researchers have developed a solar plant to produce synthetic liquid fuels that release as much CO2 during their combustion as previously extracted from the air for their production. CO2 and water are extracted directly from ambient air and split using solar energy. This process yields syngas, a mixture of hydrogen and carbon monoxide, which is subsequently processed into kerosene, methanol or other hydrocarbons. These drop-in fuels are ready for use in the existing global transport infrastructure.

Aldo Steinfeld, Professor of Renewable Energy Carriers at ETH Zurich, and his research group developed the technology. “This plant proves that carbon-neutral hydrocarbon fuels can be made from sunlight and air under real field conditions,” he explained. “The thermochemical process utilises the entire solar spectrum and proceeds at high temperatures, enabling fast reactions and high efficiency.” The research plant at the heart of Zurich advances ETH’s research towards sustainable fuels.

A small demonstration unit with big potential

The solar mini-refinery on the roof of ETH Zurich proves that the technology is feasible, even under the climate conditions prevalent in Zurich. It produces around one decilitre of fuel per day. Steinfeld and his group are already working on a large-scale test of their solar reactor in a solar tower near Madrid, which is carried out within the scope of the EU project sun-to-liquid. The solar tower plant was presented to the public in Madrid at the same time as the mini-refinery in Zurich.

The next project goal is to scale the technology for industrial implementation and make it economically competitive. “A solar plant spanning an area of one square kilometre could produce 20,000 litres of kerosene a day,” said Philipp Furler, Director (CTO) of Synhelion and a former doctoral student in Steinfeld’s group. “Theoretically, a plant the size of Switzerland – or a third of the Californian Mojave Desert – could cover the kerosene needs of the entire aviation industry. Our goal for the future is to efficiently produce sustainable fuels with our technology and thereby mitigate global CO2 emissions.”

Two spin-offs already

Two spin-offs already emerged from Aldo Steinfeld’s research group: Synhelion, founded in 2016, commercializes the solar fuel production technology. Climeworks, founded already in 2010, commercialises the technology for CO2 capture from air.

Facts, background information, dossiers
  • solar reactors
More about ETH Zürich
  • News

    A new theory for Semiconductors made of nanocrystals

    Researchers at ETH have provided the first theoretical explanation for how electrical current is conducted in semiconductors made of nanocrystals. In the future, this could lead to the development of new sensors, lasers or LEDs for TV screens. A few years ago, we were introduced to TV scree ... more

    Growing polymers with different lengths

    ETH researchers have developed a new method for producing polymers with different lengths. This paves the way for new classes of polymer materials to be used in previously inconceivable applications. It is hard to imagine everyday life without materials made of synthetic polymers. Clothes, ... more

    Surprisingly strong and deformable silicon

    Researchers at ETH and Empa have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought. In this way, sensors in smartphones could be made smaller and more robust. Since the invention of the MOSFET transistor sixty year ago, the c ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about Climeworks
  • News

    Renewable fuels from CO2 & water using 100% renewable electricity

    Norsk e-Fuel AS, the new European industry consortium headquartered in Oslo, has announced to industrialize Power-to-Liquid technology (PtL) in Norway for the European Market. The new state-of-the-art project will allow the conversion of Norway’s extensive renewable electricity resources in ... more

    Climeworks raises CHF 73M

    Climeworks has successfully raised CHF 73 million (USD 75 million) in equity from private investors. This is the largest private investment into direct air capture to date. The funding will help to drive forward the company’s scale-up roadmap and expand its carbon dioxide removal capacities ... more

    The winners of the innovation award “Best CO2 Utilisation 2020”

    At nova-Institute’s first online conferences on PtX and Carbon Capture and Utilization (CCU), 50 speakers presented and discussed the future of aviation fuels and carbon dioxide as feedstock! In the face of the current crisis, nova-Institute decided to defy the circumstances and found a new ... more

  • Companies

    Climeworks AG

    Climeworks captures CO2 from air with the world’s first commercial carbon dioxide removal technology. Our direct air capture plants remove CO2 from the atmosphere, allowing customers to reverse their emissions and realize their climate goals. more

More about Synhelion
  • Companies

    Synhelion SA

    Synhelion aims at replacing fossil fuels by economically viable CO2-neutral drop-in fuels which are 100% compatible with the current global fuel infrastructure. The solutions of Synhelion combine state-of-the-art solar tower systems with proprietary high-temperature thermochemical processe ... more