17-Jun-2019 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

New solar mini-refinery

Carbon-neutral fuel made from sunlight and air: Two spin-offs already founded

Researchers from ETH Zurich have developed a novel technology that produces liquid hydrocarbon fuels exclusively from sunlight and air. For the first time worldwide they demonstrate the entire thermochemical process chain under real field conditions. The new solar mini-refinery is located on the roof of ETH’s Machine Laboratory building in Zurich.

Carbon-neutral fuels are crucial for making aviation and maritime transport sustainable. ETH researchers have developed a solar plant to produce synthetic liquid fuels that release as much CO2 during their combustion as previously extracted from the air for their production. CO2 and water are extracted directly from ambient air and split using solar energy. This process yields syngas, a mixture of hydrogen and carbon monoxide, which is subsequently processed into kerosene, methanol or other hydrocarbons. These drop-in fuels are ready for use in the existing global transport infrastructure.

Aldo Steinfeld, Professor of Renewable Energy Carriers at ETH Zurich, and his research group developed the technology. “This plant proves that carbon-neutral hydrocarbon fuels can be made from sunlight and air under real field conditions,” he explained. “The thermochemical process utilises the entire solar spectrum and proceeds at high temperatures, enabling fast reactions and high efficiency.” The research plant at the heart of Zurich advances ETH’s research towards sustainable fuels.

A small demonstration unit with big potential

The solar mini-refinery on the roof of ETH Zurich proves that the technology is feasible, even under the climate conditions prevalent in Zurich. It produces around one decilitre of fuel per day. Steinfeld and his group are already working on a large-scale test of their solar reactor in a solar tower near Madrid, which is carried out within the scope of the EU project sun-to-liquid. The solar tower plant was presented to the public in Madrid at the same time as the mini-refinery in Zurich.

The next project goal is to scale the technology for industrial implementation and make it economically competitive. “A solar plant spanning an area of one square kilometre could produce 20,000 litres of kerosene a day,” said Philipp Furler, Director (CTO) of Synhelion and a former doctoral student in Steinfeld’s group. “Theoretically, a plant the size of Switzerland – or a third of the Californian Mojave Desert – could cover the kerosene needs of the entire aviation industry. Our goal for the future is to efficiently produce sustainable fuels with our technology and thereby mitigate global CO2 emissions.”

Two spin-offs already

Two spin-offs already emerged from Aldo Steinfeld’s research group: Synhelion, founded in 2016, commercializes the solar fuel production technology. Climeworks, founded already in 2010, commercialises the technology for CO2 capture from air.

Facts, background information, dossiers
  • solar reactors
More about ETH Zürich
  • News

    Platelets instead of spheres make screens more economical

    ETH scientists have further developed QLED technology for screens. They have produced light sources that for the first time emit high-​intensity light in only one direction. This reduces scattering losses, which makes the technology extremely energy efficient. QLED screens have been on the ... more

    An 18-carat gold nugget made of plastic

    ETH researchers have created an incredibly lightweight 18-​carat gold, using a matrix of plastic in place of metallic alloy elements. Lovers of gold watches and heavy jewellery will be thrilled. The objects of their desire may someday become much lighter, but without losing any of their gli ... more

    Honey, I shrunk Michelangelo's David

    There he is, standing upon his pedestal: David by Michelangelo. A world-​famous statue that nearly every child can recognise. But this David is just 1 millimeter tall, pedestal included, and is made not of marble like the 5.17-​meter original, but of pure copper. It was created using 3D pri ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about Climeworks
  • News

    Climeworks AG and Antecy B.V. are joining forces

    Climeworks AG and Antecy B.V. share the same goal of removing climate-relevant amounts of CO2 from the atmosphere and joining forces renders this goal more achievable. The combination of their technologies will result in even more powerful solutions for both carbon dioxide removal, as well ... more

    ETH spin-off machine running at full speed

    In 2018, ETH Zurich achieved a new record high for the number of spin-offs founded: a total of 27 founding teams took the plunge into independence. While an average of 13 ETH spin-offs were founded per year from 2000 to 2010, the following decade has seen an average of 24 per year. For Detl ... more

    Climeworks raises USD 30.8M to commercialize carbon dioxide removal technology

    Climeworks AG announced it has raised CHF 30.5 million in equity funding, from a group of existing and new private investors as well as Zurich Cantonal Bank. The successful financing round brings the Swiss company another step closer to achieving its vision of capturing one percent of globa ... more

  • Companies

    Climeworks AG

    Climeworks captures CO2 from air with the world’s first commercial carbon dioxide removal technology. Our direct air capture plants remove CO2 from the atmosphere, allowing customers to reverse their emissions and realize their climate goals. more

More about Synhelion
  • Companies

    Synhelion SA

    Synhelion aims at replacing fossil fuels by economically viable CO2-neutral drop-in fuels which are 100% compatible with the current global fuel infrastructure. The solutions of Synhelion combine state-of-the-art solar tower systems with proprietary high-temperature thermochemical processe ... more