23-Dec-2021 - Deutsches Elektronen-Synchrotron DESY

X-ray view into hydrogen production

Analysis points the way to more durable iridium electrodes

Green hydrogen is expected to play a central role in the energy industry of the future: Among other things, it can replace oil and gas as energy carriers and also enable emission-free production of steel and cement. For an efficient hydrogen economy, however, the production of the energy-containing gas must be improved. Researchers from DESY, the Justus Liebig University Giessen, the Universities of Lund and Copenhagen and the Helmholtz Institute Erlangen-Nuremberg for Renewable Energies have now investigated the costly wear of electrodes for hydrogen production at DESY's X-ray light source PETRA III. The analysis points the way to more durable electrodes, as the team reports in the journal ACS Catalysis of the American Chemical Society (ACS).

Green, or climate-neutral hydrogen is produced today with so-called electrolysers. With the help of electricity from renewable energies, they split water into its components oxygen and hydrogen. For this molecule splitting to work, current must be passed through a reactive acidic solution. For this purpose, very corrosion-resistant electrodes are used, which also serve as catalysts and decisively accelerate the reaction. One of the materials used for this is the rare precious metal iridium: in many electrolysers, the anodes are coated with a thin layer of iridium oxide. The problem is that these coatings wear off over time and corrode. This reduces the durability of the equipment and makes production costs more expensive.

With the help of X-rays from PETRA III, the researchers took a closer look at the possible wear processes. To create realistic conditions, the experts immersed a thin layer of iridium oxide in an electrolyte and applied an electric current. “Then we used the focused X-ray beam at the beamline P21.2 to observe what happened over several hours,” explains co-author Tim Weber from the University of Gießen. “Based on the measurement data, we were able to precisely record whether and how the thickness and roughness of the layer changed.” The electrolyte can be easily penetrated by the X-ray beam, and the measurement method is so fast that even rapid structural changes could be monitored.   

The iridium oxide layers examined in the study had a particularly good and uniform quality, because they were produced with a high-precision process by the team of Herbert Over at the University of Giessen. “The five-nanometre-thick layer remained practically constant during our measurements,” says co-author Vedran Vonk from the DESY NanoLab. “Neither the thickness nor the crystal structure changed appreciably.” These results provide industry with an important clue: the better and more uniform the coating with iridium oxide, the more stable and durable the anodes and the more economically the electrolysers can operate in the long term. “Only if we manage to understand the corrosion processes on an atomic scale will we also have the opportunity to look for materials that can replace iridium,” says Over, who led the study. The present results are an important step in this direction.

Facts, background information, dossiers
More about Deutsches Elektronen-Synchrotron DESY
More about Justus-Liebig-Universität Gießen
  • News

    Corals remove microplastics from ocean waters

    Reef-building corals permanently incorporate small plastic particles into their calcium carbonate skeleton – study in marine aquaria of the University of Giessen provides first evidence of organisms that remove microplastics from the environment in the long term Increasing numbers of tiny p ... more

    Just a few atoms thick: New functional materials developed

    They are 50,000 times thinner than a human hair, and just a few atoms thick: two-dimensional materials are the thinnest substances it is possible to make today. They have completely new properties and are regarded as the next major step in modern semiconductor technology. In the future they ... more

    It's Not an Illusion

    Researchers have developed a compound that can transform near-infrared light into broadband white-light, offering a cheap, efficient means to produce visible light. The emitted light is also exceedingly directional, a desirable quality for devices like microscopes that require high spatial ... more

More about Lund University
  • News

    Breakthrough in converting CO2 into fuel using solar energy

    A research team led by Lund University in Sweden has shown how solar power can convert carbon dioxide into fuel, by using advanced materials and ultra-fast laser spectroscopy. The breakthrough could be an important piece of the puzzle in reducing the levels of greenhouse gases in the atmosp ... more

    Turbo boost for materials research

    A new algorithm has been designed to help discover previously unknown material compounds. It was developed by a team from Martin Luther University Halle-Wittenberg (MLU), Friedrich Schiller University Jena and Lund University in Sweden. The researchers designed a form of artificial intellig ... more

    Lead Halide Perovskites – a Horse of a Different Color

    In a joint experimental and theoretical effort between Lund University (Sweden), the Russian Academy of Science (Russia), and the Center for Advancing Electronics Dresden at Technische Universität Dresden (Germany), researchers developed a novel spectroscopic technique for the study of char ... more

More about University of Copenhagen
  • News

    Reusable plastic bottles release hundreds of chemicals

    Researchers at the University of Copenhagen have found several hundred different chemical substances in tap water stored in reusable plastic bottles. Several of these substances are potentially harmful to human health. There is a need for better regulation and manufacturing standards for ma ... more

    A treasure map for the realm of electrocatalysts

    Efficient electrocatalysts, which are needed for the production of green hydrogen, for example, are hidden in materials composed of five or more elements. A team from Ruhr-Universität Bochum (RUB) and the University of Copenhagen has developed an efficient method for identifying promising c ... more

    Quickly identify high-performance multi-element catalysts

    Finding the best material composition among thousands of possibilities is like looking for a needle in a haystack. An international team is combining computer simulations and high-throughput experiments to do this. Catalysts consisting of at least five chemical elements could be the key to ... more

More about Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien
  • News

    From greenhouse gas to valuable basic chemicals

    The conversion of carbon dioxide into hydrocarbons and other basic chemicals is important if we are to have a sustainable economy in the future. Researchers at the TU Darmstadt and the Helmholtz Institute Erlangen-Nürnberg for Renewable Energy have now decoded major steps in electrochemical ... more