30-May-2022 - Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg

Most powerful dual-comb spectrometer developed

System paves the way for many applications

Scientists from Hamburg and Munich developed the world's most powerful dual-comb spectrometer that paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. The work has recently been published in Nature Communications.

The core part of the system is a special type of laser-gain medium, a thin-disk, and a unique configuration of the mirrors surrounding this medium, a laser resonator (shown in the illustration). "The key of our dual comb laser source lies in its simplicity", team leader Oleg Pronin explains. "Instead of using two separate lasers, actively stabilizing and locking them to each other, our two laser outputs originate from the same laser resonator, leading to an excellent intrinsic mutual stability." The dual-output laser yields one order of magnitude higher power than ever before. This paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. Fundamental research applications such as precise measurements of the atomic lines in uncovered spectral ranges and nuclear clocks, the most precise clocks in our universe, come into reach thanks to this novel spectrometer.

The dual-comb spectrometer converts extremely fast electric field oscillations (10¹⁵ oscillations per second) of light into radiofrequency range (10⁶ oscillations per second), where the signal can be detected in real-time with modern electronics. The process is realized with two trains of laser pulses with slightly different spacing. It offers high sensitivity and resolution with fast acquisition times in the millisecond time scale. Megawatt level peak powers pave the way toward high-resolution spectroscopy in the deep ultraviolet frequency range via frequency conversion – a spectral domain yet poorly covered in today's spectrometers. Compared to complex, actively stabilized laser systems, the compact size facilitates real-world applications, such as atmospheric sensing and high-precision distance measurements.

Facts, background information, dossiers
More about MPI für Quantenoptik
  • News

    A nanokelvin microwave refrigerator for molecules

    Researchers at the Max Planck Institute of Quantum Optics have developed a novel cooling technique for molecular gases that allows polar molecules to be cooled down to a few nanokelvin. The trick used by the team in Garching to overcome this hurdle is based on a rotating microwave field. It ... more

    Light-Controlled Reactions at the Nanoscale

    Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular bonds on nanoparticle surfaces have bee ... more

    The next phase of the proton puzzle

    Scientists at the Max Planck Institute of Quantum Optics (MPQ) have succeeded in testing quantum electrodynamics with unprecedented accuracy to 13 decimal places. The new measurement is almost twice as accurate as all previous hydrogen measurements combined and moves science one step closer ... more

More about LMU
  • News

    Light-Controlled Reactions at the Nanoscale

    Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular bonds on nanoparticle surfaces have bee ... more

    Early Earth: Evolution in the abiotic world

    Chemical evolution took place on the early Earth before the biological one: Out of simple abiotic molecules, there emerged increasingly complex networks of chemical reactions and ultimately the first building blocks of life. Analogously to its biological counterpart, chemical evolution is b ... more

    Energy Conversion: Make carbonate not carbon dioxide

    Nature knows several ways how to capture carbon dioxide (CO2). The most prominent one is photosynthesis, where sun light is used to fix CO2 into biomass. Nowadays, research groups around the world try hard to mimic this process and to realize artificial photosynthesis. The ultimate goal is ... more