Concept for efficiency-enhanced noble-metal catalysts
New approach for the production of resource-saving and durable catalysts benefits from varying interactions between noble metals and different carrier materials
Foto: ITCP, KIT
Newly Designed Support Material – Noble-Metal Atoms Gather to Form Ceria “Islands”
“Noble metals, such as Palladium, tend to bond intensely with ceria, but hardly interact with aluminum oxide,” explains Gashnikova. “This is why we applied palladium to tiny ceria ‘nano-islands’ which in turn were finely distributed on aluminum oxide,” says the scientist. The optimization of the support material ensures that the noble metal atoms preferably form sites on the ceria islands. The distance between the islands on the one hand and the limited mobility of ceria-bound palladium on the other hand prevent both the formation of excessively large clusters and the decomposition of the palladium into single atoms. The size of the noble-metal clusters is defined by the number of noble-metal atoms on the individual ceria islands. “Our dream is to walk the fine line during the entire lifetime of the catalyst, and, if possible, to stabilize small particles consisting of only ten to 50 atoms,” says Professor Jan-Dierk Grunwaldt, member of the ITCP Management team and spokesperson of the Collaborative Research Center (CRC) 1441, “TrackAct”.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.